

Measurable attributes of plant communities

- Physiognomy
- Species composition
- Species distributions
- Species diversity
 Nutrient cycling
- Stand structure
 Change over time
- Canopy structure
- Productivity

7

8

9/14/09

Attributes...

- Physiognomy
 - life form (size, life span, woodiness, morphology, leaf traits, location of perennating buds, phenology),
 vertical structure (height, canopy cover, leaf area
 - index) – LAI=total leaf area/ground area
- Species composition
 - Species richness r = # species in a community
 - Species evenness is a measure of the distribution of individuals among species
 - Species diversity is species richness weighted by species evenness
 - Species density is # species per unit area
- 9/14/09

Quantifying species composition

- Cover = percent of ground area covered by a species
 Basal area is commonly measured in forests
- Canopy cover is commonly measured in grasslands
 Density = number of individuals per unit area
- Frequency = percent of quadrats in which a species
- Frequency = percent of quadrats in which a species appears
- These values can be relativized so that all species add up to 100%
- Another approach is to combine several relative measures into a single importance value (IV):
 - IV = relative cover + relative density + relative frequency for each species
 - often done in forests

9/14/09

gorizing estimates into a limited number of classes								
Braun-Blanquet		Domin-Krajina		Daubenmire				
Class	Cover range	Class	Cover range	Class	Cover range			
5	75-100	10	100	6	95-100			
4	50-75	9	75-99	5	75-95			
3	25-50	8	50-75	4	50-75			
2	5-25	7	33-50	3	25-50			
1	1-5	6	25-33	2	5-25			
+	<1	5	10-25	1	0-5			
r	<<1	4	5-10					
		3	1-5					
		2	<1					
		1	<<1					
		+	<<<1					

Three scales of biodiversity (Whittaker 1975)

- Alpha diversity: diversity within a single community
- Beta diversity, change in community composition across an environmental gradient
- Gamma diversity, total diversity across several communities, "landscape-level" diversity

9/14/09

15

Sensitive to changes in proportions of common species
 Not so good for assessing rare species

17

9/14/09

	six communities, each containing five species									
	Community									
	1	2	3	4	5	6				
Species A	20	30	40	50	60	960				
Species B	20	30	30	20	10	10				
Species C	20	20	10	10	10	10				
Species D	20	10	10	10	10	10				
Species E	20	10	10	10	10	10				
Sample size	100	100	100	100	100	1000				
Species richness	5	5	5	5	5	5				
e ^{H'}	5	4.50	4.13	3.89	3.41	1.25				
D	5	4.17	3.57	3.13	2.50	1.08				
I	1	0.93	0.88	0.84	0.76	0.14				

Forest stand structure

- Tree species, sizes and sometimes ages are measured in known areas
- Can be used to estimate timber volumes
- <complex-block>

